

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-143127-REV-1

Parallelizing a High Accuracy
Hardware-Assisted Volume
Renderer for Meshes with
Arbitrary Ployhedra

J. Bennett, R. Cook, N. Max, D. May, and P. Williams

This article was submitted to IEEE Symposium on Parallel and
Large-Data Visualization and Graphics, San Diego, CA
October 22 - 23, 2001

July 23, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

Parallelizing a High Accuracy Hardware-Assisted Volume Renderer for
Meshes with Arbitrary Polyhedra

Janine Bennett���, Richard Cook���, Nelson Max���, Deborah May� and Peter Williams�

Abstract

This paper discusses our efforts to improve the performance of
the high-accuracy (HIAC) volume rendering system, based on cell
projection, which is used to display unstructured, scientific data
sets for analysis. The parallelization of HIAC, using the pthreads
and MPI API’s, resulted in significant speedup, but interactive
frame rates are not yet attainable for very large data sets.

1 INTRODUCTION

Volume visualization of scientific datasets is typically done by cell
projection or ray casting. A number of papers [13, 8, 6, 7, 4, 2, 1, 5]
have presented results of parallel volume rendering of unstructured
data, but their work has not utilized hardware graphics. A par-
allel algorithm for unstructured data using PixelFlow, a sort-last
graphics architecture, is described in [18]. A multi-threaded al-
gorithm for tetrahedral unstructured grids on a two-CPU system
was reported on in [19]. In this paper, we describe the results of
parallelizing the high-accuracy (HIAC) volume rendering system
described in [16] for unstructured data (characterized by meshes
of either tetrahedra or mixed cell types) using hardware rendering
on an SGI Onyx23.

2 OVERVIEW OF HIAC

HIAC operates in two different modes, tetrahedraor zoo-mesh,
corresponding to the type of the input data. Zoo-mesh element
may be quadrilateral-faced hexahedra or “bricks,” pentahedra (ei-
ther triangular prisms or quadrilateral-based pyramids), or tetra-
hedra. Polyhedron faces may be planar or non-planar, possibly
resulting in nonconvex cells. We parallelized the code for both the
zoo mesh and tetrahedron only modes, and compared their perfor-
mance on the twisted curvilinear grid shown in figure 11.

1University of California, Davis
2Lawrence Livermore National Laboratory
3The Onyx2 is a multiprocessor machine with a shared-memory archi-

tecture. The machine we used for testing has 48 250 MHZ IP27 MIPS
R10000 Processors, a main memory size of 15872 Mbytes, a 32 Kbyte in-
struction cache and a 32 Kbytes data cache size per processor.

Sorted Pointers
to Cells

Cells
(partial ordering

of vertices
and faces)

Preprocessing, Phase 1

Sorting Phase 2

Graphics Pipeline
Projection/Rendering Phase 3

Figure 1: Basic HIAC operation in serial. Solid arrows show con-
trol flow; dashed arrows are for data evolution.

Cell A

Cell B

viewpoint

Cell A1

Cell B

Cell A2 Cell A3

Figure 2: An example of how a twisted face between cells A and
B cause their front/back relationship to be indeterminate. Note that
there would be no problem with the twisted face if the viewpoint
were looking up in the picture from the bottom of cell B. One way
to fix the problem is by subdividing cell A as shown.

When operating in serial, as shown in Figure 1, HIAC execu-
tion is characterized by three phases, which are the preprocessing
phase, the visibility sort phase, and the projection and rendering
phase. In the preprocessing phase, the entire data set is read from
disk into core memory. In core memory, cells are stored in an in-
ternal representation that maintains information such as pointers
to vertices and faces as well as adjacency information. Prior to
actually sorting the cells, a partial ordering on the cells is gener-
ated by marking each cell face with an arrow. The arrow indicates
which of the two cells sharing the face is in front with respect to
the viewer position. Cells with non-planar faces may cause prob-
lems since a ray from the viewpoint may enter and exit a cell, pass
through another cell and then reenter the first cell (see Figure 2)
causing a visibility ordering cycle. Such cells are tested to see
if they do cause this problem and, if so, they are subdivided into
tetrahedra to eliminate visibility-ordering cycles (see [9]).

The cells are visibility sorted from back to front using the par-
tial ordering. The sorting is done by one of two methods depend-
ing on user preference for speed or accuracy. It may be done using
Meshed Polyhedron Visibility Ordering–Non-Convex(MPVONC)
algorithm [14], which is fast but does not guarantee an accurate

1 2

3
4

56

7

Figure 3: HIAC’s projection and slicing of a cell by its edges into
polygons in the view plane.

sort. Another sorting algorithm that may be used is the Scan-
ning Exact MPVO(SXMPVO) [3] algorithm, a modification of
the MPVONC algorithm that is exact but slower.

In the projection and rendering phase, the sorted cells are pro-
jected onto the screen in back to front order using the projection
scheme described in [16] and [9]. As they are projected, OpenGL
may be used to draw and composite the resulting polygons, or the
rendering may be done in software. The software rendering algo-
rithm is described in Section 4.

When OpenGL is used, HIAC first flattens each cell into a num-
ber of view plane polygons, not necessarily triangular, in a manner
similar to that for tetrahedra in the Shirley-Tuchman method [12]
(see Figure 3). For cells other than tetrahedra, projections topo-
logically equivalent to the one in Figure 3 or to one of the two
other non-degenerate perspective projections of a cube are called
“simple” cases as such cases generate predictable lists of trian-
gle fans as in [12] and [11]. In other cases, the polygons created
are a partitioning of the projection of the cell by the projection of
each of its edges on the view plane. This partitioning is done by
adding the projected edges one by one to a winged-edge structure
(described in [10]) for the view plane. In this manner, HIAC can
handle polyhedra ranging from tetrahedral cells to more general
zoo-mesh cells.

The computational geometry for the general cell projection al-
gorithm is complicated and slow, so the three simple hexahedron
projection cases take much less time. Hexahedral cells with non-
planar faces have some viewpoints where their projections are sim-
ple, and others where they are not. The viewing angle also affects
whether a cell causes a visibility cycle and must be subdivided into
tetrahedra. Therefore, the performance of the zoo element mode
varies substantially with viewpoint changes, while the tetrahedron
only mode is less sensitive to such changes.

To render each polygon thus created, HIAC calculates the exact
color and opacity of the ray segment through each vertex of each
polygon, based on the opacity transfer function of the cell and the
length of the ray segment. If the transfer functions that map scalar
field values to opacity and color densities are linear and the scalar
field being imaged also varies linearly along the ray segment, then
the integrated opacity is a quadratic along the ray segment and
the color integral can be computed analytically (see [15] for the
solution). OpenGL calls can be then used to render the polygon,
taking advantage of graphics hardware for polygon rasterization
and interpolation of color between polygon vertices, as well as
back-to-front fragment composition.

If the opacity varies linearly along the ray segments, 2D tex-
ture maps may be used as in [16] together with the compositing
functions present in most graphics cards to compute the opacity
contribution of the ray segment to fairly high accuracy. The calcu-
lation is done by preloading the texture map with the function

���� �� � �� �
��� (1)

Equation 1 is the integral for the opacity of a line segment from

object space
decomposition

OpenGL
thread

projected
cells

project
thread

project
thread

project
thread

partially
ordered
cells

Sort
thread

sorted
cells

Figure 4: HIAC operation in parallel mode.

�� to ��, of length � � �� � �� and with linearly varying opacity
density between ��� and ��� , with � � ���� � �

�
���� � ����.

Graphics compositing hardware then blends the interpolated poly-
gon color ��	�
��� with the frame buffer color ��	�
�	
 using
the standard equation

��	�
��� � ��� ����	�
�	
 � ���	�
��� (2)

HIAC uses linear or bilinear interpolation of vertex colors across
polygons, and equations 1 and 2 to correctly composite polygons
from back to front in hardware. The values of � and � are com-
puted at the polygon vertices and the texture mapping hardware
interpolates � and � across the polygons. Since each of the view-
plane polygons, as shown in Figure 3, is in the projection of a
single front-facing face of the cell and a single back-facing face,
the ray segment length �� � �� varies linearly across the polygon.
For a linear variation of � within the cell, ���� also varies linearly
across the polygon. Therefore, the texture coordinate interpolation
gives the correct opacity � for each pixel. However, the integrated
ray color varies in a more complicated way across the polygon, so
the hardware integrated color is only approximately correct.

Further compromises of image quality for speed may be made
when operating using hardware projection. For example, the user
may choose to not calculate the color integral but instead, for ex-
ample, use the average of the colors at the near and far ends of
the ray segment. One may eliminate the texture mapping, and in-
stead have the hardware interpolate the vertex opacities across the
polygons. Such approximations can lead to artifacts in the image,
but are included in HIAC to allow flexibility to the user. For com-
pletely accurate colors, one must do the analytic integral for each
pixel’s ray segment in software. The parallelization of the software
rendering algorithm is described in section 4. More details about
the serial version of HIAC are given in [16] and [9], while [17]
gives a detailed discussion of the current state of HIAC and of the
SXMPVO sorting algorithm.

3 PARALLEL ALGORITHMS FOR HARD-
WARE RENDERING

3.1 Parallel Cell Projection

When HIAC is run in serial with hardware rendering, the projec-
tion step of the algorithm takes most of the time. Therefore, we
focused our efforts on parallelizing it. The output of the sorting
phase (the input to the projection phase) is an array of ordered
cells. This array can be decomposed into subarrays and fed to the
projection phase as independent work quanta as long as the overall

typedef struct {
int rk_class;
float texture[MAXPTS*2];
float color[MAXPTS*4];
float vertex[MAXPTS*3];

} splat;

Figure 5: Data structure to support tetrahedra mode thread com-
munication.

ordering is maintained, which is achieved by thread communica-
tion discussed in Section 3.2.

During HIAC parallel operation, each cell moves through a
pipeline as in Figure 4. The sorting thread proceeds to place
the cells’ indices into an array in back-to-front order as they are
discovered by the visibility ordering algorithm. When the sort-
ing thread finishes “enough” cells (this is a tuning parameter) to
constitute a work quantum, the projection threads begin to project
the sorted cells. The projection threads place their resulting ver-
tex, color, and texture information into another array. The render
thread pulls this information and issues OpenGL calls.

3.2 Communication

Pthreads were chosen over MPI because the Pthreads library uses
shared-memory processing, which is natural to the IRIX operating
system on which HIAC is currently being developed. Furthermore,
process-level parallelism using MPI would dramatically increase
message overhead due to its use of network protocols for messag-
ing. MPI would, however, allow for easier porting from SGI to
large-scale distributed-memory architecture cluster configurations
(such as Lawrence Livermore National Laboratory’s ASCI White
machine).

When operating in tetrahedra mode, two sets of global buffers,
whose access is restricted by semaphores, are used for commu-
nication between phases. The first of these is composed of two
integer arrays, called the sort projection buffers, which are used
for transferring cell indices from the sort thread to the projection
threads. One of the projection threads, the Communicator, is se-
lected to communicate with the sort and render threads. The sort-
ing thread sorts a global array of cells in visibility order and stores
the sorted indices into one of these buffers. Once this array is
full, the sort projection buffers are swapped and the Communica-
tor wakes up the projection threads, which begin projecting these
cells. The projection threads each have a non-overlapping section
of the sort projection buffer that they pull their work from in order
to gain locality of memory references for each thread. The threads
project the tetrahedra onto the view plane and decompose their
projections into triangles. For each tetrahedron they also record
the Shirley-Tuchman case [12] as well as all of the vertex, color,
and texture information needed to render the tetrahedron. This in-
formation is stored in the appropriate data structure (see Figure
5) in one of two projection render arrays. While the projection
threads are filling one projection render array, the render thread is
using the information stored in the other array to make the appro-
priate OpenGL calls.

During zoo-mode operation, communication between sort and
projection threads is handled by the sort thread. When the sort
thread finishes sorting “enough” cells, it obtains a workQuantum
(see Figure 6) from the global pool and places a reference to this
quantum into two global arrays, one of which is used to character-
ized the work to be done by the projection threads one of which

typedef struct {
char doProjectFlag;
long startCell, endCell, pcbIndex;
long ttStart, ttEnd, pcbIndex;
char doneProjectingFlag,

inUseFlag, isLastFlag;
long vvIndex, vvMax,

polyIndex, polyArraySize;
GLfloat *mTexArray, *mVertexArray,

*mColorArray;
int *polyVertexCounts;

} workQuantum;

Figure 6: Data structure to support zoo-mesh mode thread com-
munication.

is used to characterize the work of the rendering thread. The sort
thread next fills in the start and end cell information for the work
quantum and then awakens a single projection thread to process it.
The projection thread performs the projection calculations on the
cells referenced by the work quantum and stores the information
from its calculations on each cell in arrays within each work quan-
tum. When the work quantum is complete, the projection thread
marks the doneProjectingFlag for the work quantum and goes to
sleep waiting for another work quantum. The render thread con-
tinually polls the doneProjectingFlag of the next work quantum in
its work pile and, when this flag is set, the render thread makes the
OpenGL calls required to display the final image.

4 PARALLEL ALGORITHMS FOR SOFT-
WARE RENDERING

HIAC creates its most accurate images by performing a separate
exact analytic or numerical integration for each of the three pri-
mary colors for each pixel that a cell projects onto. This can only
be done in software. The results of the ray integrations are stored
in 3 separate frame buffers, one each for the red, green and blue
channels. Therefore, if cell � projects onto �� pixels, for
 cells
a total of �

�������� integrations are needed. For large data sets,
this may take on the order of hours. Therefore, we investigated a
parallel algorithm on an IBM SP2 using MPI.

In this algorithm, the entire data set is first distributed to all
the nodes of the SP2, then for each view point, the nodes run a
distributed k-d partitioning algorithm to create load balanced par-
titions of the data at each node. No data actually moves; only
bounding box statistics are exchanged until a satisfactory balance
is achieved. Then each node calculates a visibility ordering and
then performs volume rendering integrations on its partition of the
data, resulting in a tile of the image in the three frame buffers resid-
ing on each node. Threading is not used. The green frame buffer
tiles are sent to a “green master” node, red to a “red master,” and
blue to the “blue master” node, via the interconnect switch. The
green master node then assembles the final green image, etc. Fi-
nally, the green, blue and red masters send their images to the over-
all master node, which then accumulates the three frame buffers
into the final RGB image and writes it to disk.

number load max sort gather overall
of balance render time time

nodes time time
4 0.09 39.17 0.43 39.69
8 0.09 13.30 2.40 15.79

16 0.08 6.09 2.75 9.64
32 0.08 2.64 1.52 4.24
64 0.08 3.3 3.09 6.47
128 0.08 1.02 1.05 2.15

Table 1: Timings from SP2 environment. Data set size: 600,000
tetrahedra, all times in minutes.

Seconds
1 81.6

Number 2 41.2
3 28.1

of 4 21.6
6 15.4

Projection 8 12.1
10 10.2

Threads 12 9.3
18 7.6
22 7.7

Table 2: Overall volume rendering times using zoo mode paral-
lelism for a data set with 299,000 hexahedral cells, which after
view-dependent subdivision had 308,190 cells. Times are shown
for the use of various numbers of projection threads (using method
M0 and casification). In addition to the projection threads, one
thread is used for sorting, MPVONC in this case, and one for mak-
ing the OpenGL calls. All timings are in seconds.

5 RESULTS

5.1 Results on the SP2

The results of the SP2 software experiment are shown in Table 1.
The gathering operation is the bottleneck and shows up at around
32 processors. A more sophisticated gathering algorithm should
postpone the flattening of the speed-up curve to 64-128 processors.
Load balancing time is minimal and requires little communication
overhead. A good speed up is obtained by partitioning the sorting
and rendering – the superlinear speedup is accounted for by the
tiling of the original NNS sort, as described in [16]. Overall, the
results were satisfactory and should scale to much larger data sets.

5.2 Parallelism Speedup on the SGI

To determine the speedup from parallelizing HIAC, we measured
the execution time of HIAC from the moment the sort started to the
time the last cell was projected using various numbers of projec-
tion threads. We used the MPVONC sorting algorithm for parallel
measurements.

5.2.1 Zoo-Mesh Mode

In order to compare the performance of the tetrahedron only and
zoo element modes, we created artificial data sets of varying sizes,

0

2

4

6

8

1 0

1 2

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5

Number of Projection Threads

S
pe

ed
up

Figure 7: Program speedup using zoo-mesh cell projection on a
dataset of 308,190 cells.

by wrapping a curvilinear grid around a cylinder, as shown in Fig-
ure 11. The twisting of the spiral created four non planar faces in
every hexahedron, exercising the view-dependent subdivision in
the zoo element mode.

We expected the zoo element mode to generate less triangles
and put less burden on the graphics pipeline. For example, the
hexahedron projection shown in figure 3 can be drawn using two
triangle fans, with a total of 12 non-overlapping triangles. On the
other hand, when subdivided into six tetrahedra and rendered with
the Shirley-Tuchman method, it requires six triangle fans, with a
total of 22 triangles. In some places as many as four of these tri-
angles overlap, adding to the OpenGL fragment count, as well as
to the vertex and triangle count.

Our tests showed that the zoo element mode required approxi-
mately 2/3 as many triangles as the tetrahedron only mode. This is
not as good as the 12/22 ratio above because the non-planar faces
of some cells caused visibility cycles, forcing them to be subdi-
vided anyway. The best performance for the zoo element mode
was faster than the tetrahedron only mode, by approximately the
ratio of triangles rendered, but this was achieved at the expense
of using many more processors, because the general cell projec-
tion method was much slower. The relation of rendering time
to triangle counts may not be meaningful, however, because nei-
ther projection method was able to saturate our graphics hardware
pipeline, no matter how many projection processors we used.

When operating in zoo-mesh mode, Figure 7 shows that for up
to ten threads, speedup (as measured by execution time using one
thread divided by time using
 threads) is very near linear. (Linear
speedup is the optimal result for the producer–consumer type of
parallelism used in zoo-mesh mode). Adding more threads results
in diminishing returns, until at 18 threads the curve flattens out and
there is actually a small slowdown. We believe this decline is due
to communication costs over the SGI NUMA (see Section 5.2.3).

The optimum number of cells to choose per work quantum is a
tuning parameter in the zoo code. It is best to choose neither a very
small nor large quantum size. Small quanta are finished very often;
therefore, the sorting and projection threads spend a significant
portion of their time contending for mutexes in order to establish
the workload distribution. For very large quanta, which approach
in size the order of the total workload, the projection threads waste
time waiting for the sorting thread to finish each work quantum so
that they can begin their work.

Figure 8: Improvement in program performance with increasing
parallelism on tetrahedral data sets of different numbers of cells.

number
of project
threads

240,122
cells
“f117”

1,403,504
cells
“fighter”

1,794,000
cells

2,246,250
cells
“helix”

1 3.49 27.66 27.26 32.68
2 2.49 19.79 18.64 21.66
3 2.14 16.14 15.40 18.78
4 2.03 14.80 13.88 17.70
5 1.93 13.93 12.69 17.97
6 1.89 14.59 13.67 18.02
7 2.03 14.36 13.13 19.15
8 2.14 14.26 13.32 18.58
9 2.17 14.94 13.00 18.45

10 2.41 15.54 13.25 18.66

Table 3: Timings for Tetrahedra Mode. All timings are in seconds.

5.2.2 Tetrahedra Mode

Figure 8 and Table 3 show that increasing the number of projection
threads to five or six results in the optimum tetrahedra mode run-
time, which is roughtly half the run time of running the code with
only one projection thread. (The “fighter”, “f117”, and “helix”
images are shown in Figures 10, 9 and 11 respectively.) We be-
lieve that, when running in parallel tetrahedra mode, the limitation
on HIAC performance is the memory bandwidth of the NUMA to
send color and vertex information from the projection threads to
the rendering thread. Since the zoo code requires more computa-
tional effort, this effect is not seen until more threads are used and
more memory bandwidth is generated by the projection threads.
This explains why the speedup curve for the tetrahedral code flat-
tens out for fewer processors than for the zoo mesh code.

5.2.3 Peculiarities of the SGI Memory Architecture

SGI multiprocessor machines use a non-uniform memory archi-
tecture (NUMA), which means that the time it takes a process to
access memory is proportional to the physical distance between
the processor and memory. During parallel execution of the HIAC
program, data needed by a processor are not necessarily physically
close to the processor in memory, but may be several “hops” away.
The number of hops a memory reference needs to travel to fulfill

a CPU request will tend to increase as the number of processors
working on the data set increases. There is an inherent limit to
speedup on the NUMA due to these extra communications costs.
Hofsetz and Ma [5] implemented a software parallel cell profec-
tion algorithm with pthreads on an SGI Origin 2000, which has the
same processor and interconnect architecture as our Onyx2. Their
speed-up curve exhibited flattening at about the same number of
processors as does Figure 7.

Acknowledgement
We are grateful for the expert technical advice and contribu-

tions of Randy Frank of Lawrence Livermore National Laborato-
ries. The “fighter” data set was graciously shared with us by David
Marcum and the Computational Simulation and Design Center at
the Mississippi State University Engineering Research Center. The
“f177” data set came to us through the kindness of Robert Haimes
of MIT.

This work was performed under the auspices of the U.S. Depart-
ment of Energy by the University of California, Lawrence Liver-
more National Laboratory under Contract No. W-7405-Eng-48.

References

[1] Judy Challinger. Parallel volume rendering on a
shared-memory multiprocessor. 1991.

[2] Judy Challinger. Scalable parallel volume raycasting for
nonrectilinear computational grids. ACM SIGGRAPH
Symposium on Parallel Rendering, pages 81–88, November
1993.

[3] Richard Cook, Nelson Max, Claudio Silva, and Peter
Williams. Efficiently sorting zoo-mesh data sets. Technical
Report UCRL-ID-143126, Lawrence Livermore National
Laboratories, Livermore, CA, June 2001.

[4] C. Giertsen and J. Petersen. Parallel volume rendering on a
network of workstations,. IEEE Comp. Gr. and Applic.,
13(6):16–23, 1993.

[5] C. Hofsetz and K.-L. Ma. Multi-threaded rendering
unstructured-grid volume data on the sgi origin 2000. In
Third Eurographics Workshop on Parallel Graphics and
Visualization, 2000.

[6] K-L Ma and T. W. Crockett. A scalable parallel
cell-projection volume rendering algorithm for
three-dimesnional unstructured data. IEEE 1997 Symp. on
Parallel Rendering, pages 95–104, Oct. 1997.

[7] K-L Ma and T. W. Crockett. Parallel visualization of
large-scale aerodynamic calculations: A case study on the
cray t3e. 1999 IEEE Parallel Visualization and Graphics
Symp., pages 15–20, Oct. 1999.

[8] Kwan-Liu Ma. Parallel volume ray-casting for unstructured
grid data on distributed memory architectures. IEEE 1995
Parallel Rendering Symposium, pages 23–30, October 1995.

[9] Nelson Max, Peter Williams, and Claudio Silva.
Approximate volume rendering for curvilinear and
unstructured grids by hardware-assisted polyhedron
projection. International Journal of Imaging Systems,
11:53–61, 2000.

[10] Joseph O’Rourke. Computational geometry in C. 1993.
ISBN 0-521-44034-3.

[11] Greg Schussman and Nelson Max. Perspective volume
rendering using triangle faces. In Proceedings of the
International Workshop on Volume Graphics, Stony Brook,
NY, June 2001.

[12] Peter Shirley and Allan Tuchman. A polygonal
approximation to direct scalar volume rendering. Computer
Graphics (San Diego Workshop on Volume Visualization),
24:63–70, November 1990.

[13] P. Williams. Parallel volume rendering finite element data.
In Thalmann and Thalmann, editors, Communicating with
Virtual Worlds, pages 473–484. Springer Verlag, 1993.

[14] Peter Williams. Visibility ordering meshed polyhedra. ACM
Transactions on Graphics, 11(2):103–126, April 1992.

[15] Peter Williams and Nelson Max. A volume density optical
model. ACM Workshop on Volume Visualization, pages
61–68, October 1992.

[16] Peter Williams, Nelson Max, and Clifford Stein. A high
accuracy volume renderer for unstructured data. IEEE
Transactions on Visualization and Computer Graphics,
4(1):37–54, January-March 1998.

[17] Peter L. Williams and Nelson L. Max. The LLNL high
accuracy volume renderer for unstructured data:
Capabilities, current limits, and potential for ASCI/VIEWS
deployment. Technical Report UCRL-ID-144107,
Lawrence Livermore National Laboratories, Livermore, CA,
June 2001.

[18] C. M. Wittenbrink. Irregular grid volume rendering with
composition networks. In Proceedings of IS&T/SPIE Visual
Data Exploration and Analysis, volume 3298, pages
250–260. SPIE, January 1998. Available as
Hewlett-Packard Laboratories Technical Report
HPL-97-51-R1.

[19] Craig M. Wittenbrink, M.E. Goss, and H. Wolters.
Interactive unstructured volume rendering and
classification. Technical Report HPL-2000-13,
Hewlett-Packard Laboratories, Palo Alto, CA, January
2000. Submitted to the Proceedings of Dagstuhl, Germany
workshop on scientific visualization, May 2000.

Figure 9: The “f117” dataset image.

Figure 10: The “fighter” data set image.

Figure 11: The “helix” dataset image.

